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ABSTRACT 

The  Magellan  Doppler  radiometric  tracking data provides  unprecedented  precision 

for spacecraft  based  gravity  measurements  with  the  maximum  resolution  approaching 

spherical  harmonic  degree  and  order  180 in selected  equatorial  regions.  Determining a 

gravity  field to degree 180 with a  complete  covariance  containing  the  correlations  between 

all  the  spherical  harmonic  coefficients  (a  4.5 GB  binary  file  for  the  triangular  matrix)  would 

be an extensive  computational  task  even  on  the  JPL/Caltech  supercomputer  that  we used. 

Instead  we  determined  a  gravity  field  complete  to  degree  and  order  180  but  in  three  separate 

steps. This  gravity  solution  (MGNP180U)  was  determined  first  to  degree  and  order 120 

with  a  complete  covariance  for all the  coefficients  to  degree  120.  The  second  step  solved 

for the  coefficients  from  degree 116 to  155  only  and  the  third  step  from  degree  154 to 180. 

MGNP180U  shows  substantial  improvement  over  previous  solutions  (up  to  and  including 

MGNP120PSAAP,  Konopliv  et al, 1996a)  especially  in  the  medium  to  shorter 

wavelengths  (harmonic  degree 80 and  greater).  The rms magnitude  power  in  the  spectrum 

has  increased  as  well as the  correlations  with  topography.  The  amplitudes of various 

features  have  increased  substantially ( up  to 33%, e.g., Bell  Regio  and  Maat  Mons). This 

will  allow  for  better  investigation  of  lithospheric  modeling  for  shorter  wavelength  features 

such as coronae,  volcanoesi,  and  impact  basins. 
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Introduction 

Two  spacecraft  orbiters,  Magellan  and  Pioneer  Venus  Orbiter  (Pioneer  12  or  PVO), 

provide  nearly  a  global  gravity  data  set  for  Venus.  Together  they  have  been  used  to  solve 

for  a  180th  degree  and  order  spherical  harmonic  gravity  field of Venus  and  additional 

parameters  such  as  the  ephemeris  of  Venus  with  respect  to  the Earth and  the  pole  and 

rotation  rate  of  Venus.  The  Venusian  Love  number results  have  been  previously  reported 

(Konopliv  and  Yoder,  1996b)  and  indicate  that  the  Venus  core  is  liquid. 

The  initial  spherical  harmonic  determinations  of  the  Venus  gravity  field  were  from 

the  PVO  tracking  data set.  Ananda  et al (1980)  determined  a  field  to  degree  and  order  six 

and  Williams et  al  (1983)  to  degree  and  order  seven.  Mottinger  et al (1985)  extended  the 

harmonic  solution  to  degree  and  order  ten  by  using  only  high-altitude  periapse  (about  1000 

km) data  from  PVO,  and  Bills  et  al  (1987)  solved for a  degree  and  order 18 field  by 

combining  the  high-altitude  data  with  low-altitude  data  arcs. In support of the  Magellan 

Navigation  effort,  McNamee et al(1992) reprocessed  the  low-altitude  PVO  data  to  produce 

a  21st  degree  and  order  model.  Using  the  low  and  high  altitude  PVO  data  sets,  Nerem  et al 

(1993)  determined  a 50th degree  and  order  field. 

In September  of 1990, Magellan was  inserted  into  orbit  about  Venus.  During  the 

first  three  cycles  (one  cycle  or  eight  months  provided  complete  global  longitudinal 

coverage),  the  high  gain  antenna was pointed  toward  Venus to acquire  Synthetic  Aperture 

Radar ( S A R )  images  and  no  Doppler  tracking  was  obtained  within 30 minutes  of  periapse 

(periapse  altitude  was  at 250 km). McNamee et al(1993) produced  another  21st  degree  and 

order  field  incorporating  Magellan  cycle  1  and  2  high-altitude  data  with  the  PVO  data.  With 

the  Magellan  data  from  the  gravity  campaign in cycles 4, 5, and 6, the  resolution  of  the 

gravity  field  greatly  increased.  Cycle 4 began in September  1992  after  a  maneuver  to  lower 

periapse to 170 km and  tracking  was  obtained  through  periapse.  Konopliv  et  al  (1993) 

produced  a  60th  degree  and  order  model  (PMGN60C)  by  combining  the  PVO  data  with 

four  months  of  Magellan  data  (or  about  one-half  of  longitude  coverage  from  cycle 4). After 
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Magellan  successfully  aerobraked  into  a  near  circular  orbit  in  August  of  1993,  Konopliv 

and  Sjogren  (1994a)  produced  another  60th  degree  and  order  model  (MGNP60FSAAP) 

incorporating  much of the  near  circular  orbit data, and  Konopliv  et  al  (1994b)  produced  a 

75th  degree  and  order  model  (MGNWSISAAP)  with  all  the  Magellan  gravity  data. 

After  the 75th  degree  solution,  the  gravity  computations  were  moved  from  our 

computer  workstations  to  the JPL Cray  T3D  and  more  recently  the  CaltecWJPL HP 

SPP2000 supercomputer.  Since  then  resolution  has  continued  to  increase  with  a  90th 

degree  and  order  field  (MGNP90LSAAI9,  Sjogren,  et  al,  1997,  Konopliv  and Sjogren, 

1996c)  and  a  120th  degree  and  order  field  (MGNP120PSAAP,  Konopliv,  et al, 1996a). 

For  the  120th  degree  field,  all  the  LOS  (line-of-sight)  accelerations  remaining  in  the 

residuals  were  also  delivered to the  Geosciences  Node  of  the  Planetary  Data  Systems 

(PDS),  at  Washington  University  (St.  Louis,  MO)..  This  included all  the  Doppler  X-band 

data for cycles 4, 5, and 6. Most  recently,  a  155th  degree  and  order  field (MGNP155S, 

Konopliv  and Sjogren, 1997)  was  presented.  Although  similar  in  development,  that 

solution  has  a  slightly  tighter  constraint  than  the  solution  (MGNP180U)  in this paper.  The 

harmonic  coefficients  of  both  fields  are  also  available  from  the  lead  author  or  from  the 

Geosciences  Node of  the  PDS. 

The  spherical  harmonic  gravity  fields  mentioned  above  are  dynamically  determined. 

All the  forces  on  the  spacecraft  are modeled  and  their  effect  on  the  spacecraft's  orbit  is 

estimated  from  the  tracking data. Thus  gravity  coefficients are determined  by  short  term 

acceleration  visible  in  the  residuals  and  the  longer  term  effect  on  the  orbit.  Other  methods 

using  the  LOS data  have  been  used to determine  the  gravity  field  both  regionally  (Barriot  et 

al, 1997,  McKenzie  and  Nimmo,  1997)  and  globally  (Kaula,  1996).  These  methods are 

geometric  in  that  they  compute  the  spacecraft  velocity  in  the  line-of  sight  direction  from  the 

Earth to  Venus  and  then  downward  continue  the  accelerations  to  the  surface  of  Venus.  The 

effect of the  spacecraft  accelerations  on  the  spacecraft  orbit are neglected  and  if  the  long  to 

medium  wavelength  gravity  signature  has  been  removed this is  a  good  approximation.  For 
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instance,  our  solutions  for the  spacecraft  positions  change  by 300 meters  when  using  a 

120th  degree  truncation of  the  180th  degree  field.  This  is  not  a  source  of  error  in  reducing 

the  spacecraft  line-of-sight  accelerations  since  it  is  below  the  resolution  of  the  gravity  field 

(which  is  100 km for  a  180th  degree  field),  but  it  does  indicate  that  there  is  still  a  significant 

amount  of  orbit  or  dynamical  information  beyond  degree  120 in the  tracking  data.  With  a 

full  180th  degree  gravity  field,  the  orbit  uncertainty is about 100 to 200  meters  mostly  in 

the  alongtrack  direction. In our  analysis  special  care  was  given  to  the  gravity  constraint in 

that  it  is  spatially  different  depending  on  the  strength  of  the  data,  but  detailed  investigations 

of each  region was not  done.  Careful LOS analysis  most  likely  will  result  in  improved  high 

frequency  gravity. 

Gravity Data 

The  gravity  measurements  used for Venus  gravity  field  determination  are  two-way 

(station-to-spacecraft-to-station)  coherent  Doppler  tracking  of  the  PVO  and  Magellan 

spacecraft  acquired  at  the  Deep  Space  Network (DSN) complexes  at Goldstone, California; 

Madrid,  Spain;  and  Canberra,  Australia.  The  PVO  spacecraft  operated  at  the  S-band 

frequency  of  2.2  GHz.  The  Magellan  spacecraft  had  an  S-band  transponder  with an X to S- 

band  uplink  converter  and S to  X-band  downlink  converter.  The  resulting  system  had 

either  an  X-band  or  S-band  uplink  and  an  S-band andor X-band  downlink.  The  X-band 

uplink  and  X-band  downlink  (8.43  GHz)  provided  the  highest  resolution  gravity  data 

because  of  reduced  charged  particle  effects  on  the  X-band signal. All two-way Magellan 

data  were  processed  beginning  with  the  gravity  data  of  cycle 4. 

PVO  was  inserted  into  orbit  about  Venus  on  December 4, 1978  and  provided 

several  years  of  low-altitude  periapse  data  (150  to  170 km) until  July  of 1980  after  which 

no  maneuvers  were  performed  to  maintain  a  low  periapse  altitude.  The  data  sample  rate at 

periapse  is 5 seconds.  Data  are  included in the  solution  until  November of 1980, where 

periapse  altitude  reached  400 km due  to  solar  perturbations  on  the  orbit.  About  one  year  of 

high  altitude  data (lo00 km periapse  altitude)  beginning  in  November 198 1  are  included in 
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the  gravity  solution.  Konopliv  and  Sjogren (1996~) and  Sjogren  et  al,  1997  give  a 

extensive  description  of  the  PVO  and  Magellan  data  and  their  orbits. 

Cycle  four  for  Magellan  began  on  September 15, 1992  and  continued  to  May 24, 

1993.  During  the  complete  cycle,  there  were  no  periapse  altitude  adjustments  and  the 

altitude  varied  between  185  and  165 km. Magellan was  tracked  through  periapse  with  a 

two-second  sample  time,  but  for  the  spherical  harmonic  gravity  solutions,  the  sample  time 

was  compressed  to 10 seconds.  With  a  periapse  velocity of 8.5 W s ,  10  second  samples 

provide  one  plus  samples  per  half  wavelength  of  a  180th  degree  and  order  field.  This  is 

undersampled  but  is  alleviated  with  multiple  longitudinal  coverage  (multiple  cycles)  and 

orbit  groundtrack  separation  of 20 km for  cycle  4  and 10 km for  cycles 5 and 6. The  10 

second  sample  time  was  chosen  to  reduce  the  computational  time  required  to  generate  the 

solution.  There  are  770,000  10-second  observations  (both X and  S-band)  for  cycle  four. 

At  the  end  of May,  1993,  Magellan  periapse  was  lowered  deep  into  the  atmosphere 

to begin  aerobraking.  Over  the  next  several  months to early  August,  the  atmospheric  drag 

on  the  spacecraft  changed  the  orbit  to  nearly  circular to provide  much  lower  altitude  gravity 

tracking  at  the  higher  latitudes.  From  August 6, 1993  (August  17  for  beginning  of  X-band) 

to  October 10, 1994, Magellan  was  tracked in this nearly  circular  orbit  with  apoapse 

altitude  varying  from  600 km to 350 km and  periapse  altitude  from  155 km to 220 km. The 

same  compression  time of 10  seconds  is  used for the  post-aerobraking  data  and  amounts to 

1,230,000  observations.  The  velocity of the  Magellan  spacecraft  in  the  nearly  circular  orbit 

is  about  7 km/s, providing  an  alongtrack  sample  every 70 km. 

The  PVO  and  Magellan  data  are  divided  into  data  arcs  where  the  time  span of the  arc 

is  typically  one  week  for  PVO  (one  orbit  per  day)  and  three  days  for  Magellan.  The  arcs  for 

PVO are the  same  as our previous  work  but  the  Magellan  arc  lengths  were  increased  by  a 

factor of  three  beginning  with  the  120th  degree  and  greater  solutions  (Konopliv  et al, 

1996a).  Thus  the Magellan  arcs  contain  about 24 orbits per  arc for cycle  4  and  about  48 
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orbit  per  arc  for  cycles 5 and 6.  For each  arc  the  solution for the  spacecraft  position  and 

velocity is independent of the  other  arcs. 

Gravity Modeling 

The  PVO  and  Magellan  Doppler  observations  were  processed  using JPL's Orbit 

Determination  Program  (ODP)  (see  Moyer,  1971);  the  software  set  used  at JPL for 

navigation  of all planetary  spacecraft.  The  ODP  was  modified  for  use on the  CaltecWJPL 

HP SPP2000 supercomputer  and  it  estimates  the  spacecraft  state  and  other  parameters 

using  a  square  root  information  weighted  least  squares  filter  (see  Lawson  and Hanson, 

1995;  Bierman,  1977) in the  coordinate  system  defined  by  the Earth's mean  equator  at  the 

epoch  of J2000. The  parameters  that  are  estimated  consist of  arc  dependent  variables 

(spacecraft  state,  etc.)  that are determined  separately  for  each  data  arc  and  global  variables 

(harmonic  coefficients,  etc.) that  are  common  to all data arcs.  The  global  parameters  are 

determined  with  a  technique  described  by  Kaula(  1966)  and  Ellis  (1980)  that  merges  only 

the  global  parameter  portion of the  square  root  information  arrays  from all the  arcs  of  PVO 

and  Magellan,  but  is  equivalent  to  solving  for  the  global  parameters  plus  arc  dependent 

parameters  of  all  arcs. 

Initially,  we  converge  the  data  arcs  by  estimating  only  the  local  variables  using  the 

nominal  values  for  the  global  variables.  For  each  data  arc  the  local  variables  estimated  are 

the  spacecraft  state,  three  solar  pressure  coefficients,  a  factor  for  the  Venus  albedo,  the  base 

density  for  each  periapse  passage  through  the  atmosphere,  the  lift-to-drag  coefficient  for  the 

low-altitude  PVO  orbits,  velocity  vector  increments  for  the  momentum  wheel  desaturations 

and star  calibrations  of  Magellan,  acceleration  vectors  for  the  hides of Magellan,  and  a  UT1 

bias for the  PVO  arcs.  The  a  priori  uncertainties  for  the  spacecraft  state  are  large  (20  km). 

The  a  priori  base  density  uncertainties  for  the  PVO  orbits  are  large  but  are  more  tightly 

constrained for Magellan  (within  2x10"*gm/cm3  of  the VIRA atmosphere  model,  Keating  et 

al,  1985).  The  a  priori on  the  Magellan  desaturations  are 0.5 mm/s and  for  the  star 
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calibrations  are 0.3 d s .  The  hides are constrained  to  10"' kds2.  For a  more  detailed 

discussion of the  force  and  observational  modeling,  see  Konopliv  and  Sjogren,  1996c. 

The  observations  of  each  arc  are  weighted  according  to  data  root  mean  square (rms) 

of that  arc  with a  separate  rms for each  tracking  station  pass  and  with  the  rms  including 

corrections  for  the  count  times of  the  observations.  The  actual  data  weight  used is the rms 

multiplied  by a  factor of two  with  an  additional  correction  factor for the  observation 

elevation.  Since  the  PVO  and  Magellan  orbits  are  nearly  polar,  the  groundtracks  converge 

near  the  pole  and  the  observations  become  more dense. For this reason,  the  observation 

sigma  is  adjusted  for  latitude Q (anew = q,ld*cos-1/24).  Using this weighting  scheme  results 

in roughly  correct  accuracies  for  the  longer  to  medium  wavelength coefficients.  The  formal 

sigmas  for  the  low  degree  terms  need to be  increased  by  a  factor  of 2 or  three  to be realistic 

but  the  sigmas  of  the  high  degree  terms  are  too  large  and  need  to  be  scaled  down.  This  is 

due to the  nongaussian  or  red  noise  characteristic  of  the  Doppler  data (Woo, 1975). 

The  gravitational  potential  of  Venus  is  modeled  by  a  spherical  harmonic  expansion 

with  normalized  coefficients (en,, Snm) and is  given  by 

n=2 m=O 

where n is  the  degree  and m is  the  order, F n m  are  the  fully  normalized  associated  Legendre 

polynomials, a, is  the  reference  radius  of  Venus  (605 1.0 km for our  models), Q is the 

latitude,  and h is  the  longitude.  The  normalized  coefficients  are  related  to  the  unnormalized 

by  (see  Kaula,  1966) 

( e n m  ; Snm> = - (n+m) ! 1'" (Cnm ; Snm) 
(2-6om)(2n+l)(n-m)! 
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where 60, is  the  Kronecker  delta  function  and e n 0  = - J n .  The  harmonic  coefficients  of 
- 

degree  one  are  fixed  to  zero  since  the  origin  of  the  coordinate  system  is  chosen  to  be  the 

center of mass of  the body.  The  body-fixed  coordinate  system  is  nominally  given  by  the 

1991  IAU  values  (Davies  et al, 1992a,  1992b) for Venus  pole  position  and  rotation  rate. 

Determining  a  gravity  field  to  degree  and  order  180  with a complete  covariance 

containing  the  correlations  between  all  the  spherical  harmonic  coefficients  would  be  an 

extensive  task  even  on  the JPUCaltech supercomputer.  The  covariance  would be a  4.5  GB 

binary  file for the  triangular  matrix..  Instead  we  determined  a  gravity  field  complete  to 

degree  and  order  180  but in three  separate  steps.  First,  using a 120th  degree  and  order  field 

(MGNP120PSAAP) as the  nominal,  a  new  120th  degree  and  order  field  was  determined 

(named  MGNP120USAAP).  The  global  variables  in  this  case  are  the  harmonic  Coefficients 

(about  15,000  parameters),  the  gravitational  mass of Venus,  the  right  ascension  and 

declination  of  the  pole  of  Venus  and  rotation  rate  of  Venus.  Using  the full  unconstrained 

covariance,  a  spatial  a  priori  (described  below)  was  applied  to  obtain  the  gravity  solution. 

Using  MGNP120USAAP  as  the  nominal  solution,  the  same  local  variables of  each  arc 

were  redetermined.  Then  a  new  gravity  field  (MGNP155USAAP)  was  determined  with  the 

global  variables  being  only  the  coefficients  from  degree  1  16  to  degree  155  (about  1 1,000 

parameters). In doing  a  subset of the  coefficients,  the  correlations  between all the  gravity 

coefficients  are  lost  but  this  saves  much  computational  time  (about  a  factor  of  5).  The 

constraint for the  second  set  of  coefficients  is  also  a  surface  constraint  as for the  120th 

solution.  Again this process  is  repeated  using  MGNP155USAAP  as  the  nominal  solution 

and  the  coefficients  from  degree  154 to degree  180  (about 10,OOO parameters)  as  the  global 

variables  to  obtain  the  final  solution  MGNPl8OU. This time a  power  law or Kaula 

constraint (- l/n2) is  applied  that  does  not  vary  spatially  to  obtain  those  coefficients. For the 

last solution  step  (degrees  154 to 180), the  power  law  constraint  provided  the  smoothest 

spectral  solution  and so was  the  method  of  choice. 
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Gravity A Priori 

Once  all  the  global  information  is  packed  from  all  the  data  arcs,  the  gravity  field  is 

constrained  with  an  a  priori.  The  common  method  is  to  constrain  each  harmonic  coefficient 

toward  zero  with an uncertainty  given  by  the  Kaula  rule (Kaula,  1966)  for that  particular 

planet  (used,  for  example,  in  Konopliv  et al. 1993,  Nerem  et al. 1993,  McNamee  et  al. 

1993  and  for  the  second and  third  steps  of  this  solution).  The  Kaula  rule  for  Venus  is  1.2  x 

, / n2  where n is  the  degree of  the  coefficient.  Although  for  the  constraint  in  the  third 

step (degrees  154 to l80), a  more  relaxed  Kaula  rule  of 4.0 x 10-5 / n2 is  applied  to  pull 

more  information  out  of  the  data.  This  is  due  to  the  “red”  noise  characteristics  of  the 

Doppler  data as mentioned  above. 

We  outline  below  a  second  method  that  applies  a  spatially  varying  constraint  based 

upon  the  data  strength.  These  particular  solutions  are  given  the S A A P  label,  Surface 

Acceleration A Priori. Ths particular  method  given  below  was  used  beginning  with 

Konopliv  and  Sjogren,  1996c  or  MGNP90LSAAP. It was  also  used  for  Mars  in  Konopliv 

and  Sjogren (1995a). This  is  the  a  priori  that  is  used  in  the  first  and  second  steps of 

determining  the  180th  degree  field. 

The  a  priori  constraint  applied  for  this  gravity  field  evaluates  the  radial  acceleration 

and  its  uncertainty  on  the  reference  sphere  (i.e., r = a,). At  that surface,  the radial 

acceleration (an) from all coefficients  of  degree n is  given  by 

To create  a  profile  of  acceleration  contributions  versus  degree,  the rms of  the 

acceleration a, is  obtained  over  the  sphere.  As  a  good  approximation,  the rms magnitude 

spectrum of the  gravity  coefficients  follows  the  Kaula  rule  and  is  given  by 
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where K is  the  constant  for  the  particular  planet (1.2 x 10-5 for Venus).  The  expected 

acceleration  profile  is  then  given  by  (for  n >> 1) 

which  for  Venus  is 

This  is  the  expected  "signal"  for  the  acceleration  at  each  point  on  the  surface of  the 

reference  sphere.  The  signal  could  also  be  determined  empirically  by  talung  the rms of a 

given  gravity  field  over  different  regions.  However,  for this work,  only  one  signal  profile 

is  used  for all latitudes  and  longitudes. 

The next  task is  to  map  the  acceleration  uncertainty  at  the  surface  into  an  uncertainty 

or "noise"  profile  showing  the  error in acceleration  versus  harmonic  degree.  The 

acceleration  uncertainty from the  summed  contributions of all coefficients  from  degree  2  to 

n, o(a2,-,), is given by 
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where G2,n is the  vector  of all normalized  gravity  coefficients  from  degree 2  to  n  and 

Pnoap(2,n) is  the  corresponding  covariance.  The  covariance of  the  coefficients  from  degree  2 

to n is  the  covariance as if  the  higher  degree  coefficients ( x )  are  not  estimated.  Hence,  it  is 

a  truncation,  or  submatrix,  of  the full 120th  degree  and  order  covariance  without  any 

constraint  applied  to  the  gravity  field.  The  partial  derivatives  of  the  acceleration  with  respect 

to  the  coefficients of  degree n  and  order m are  functions of latitude  and  longitude  and  are 

given  by 

The  uncertainty  for  the  Coefficients  of  degree  n,  O(an)  is  then  given  by  the  difference of the 

sum  total  error  to  degree  n  and  the  sum  total  error  to  degree  n-1  as 

Figure 1 shows  the  expected  acceleration  profile  from  the  signal  due  to  the  Kaula 

rule  and  the  noise  from  covariance  for  Atalanta,  the  periapse  region  for  Magellan  cycle 4 

(eastern  Eistla  Regio),  and  the  gap  in  Magellan  cycle 5 data  in  the  southern  hemisphere 

(160"E  to 220"E, 30"s to SO'S). The  crossing  point of  the  Kaula  signal  with  the 

acceleration  uncertainty is  called  the  degree  strength of  the  gravity  field  for  that  particular 

latitude  and  longitude.  For  degrees  greater  than  the  degree  strength,  the  "noise"  in  the data 
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exceeds  the  "signal."  Based  upon the  Kaula  rule,  the  degree  strengths  for  Atalanta,  Eistla, 

and  the  southern  gap are 62, 104, and 40, respectively.  Figure 2 displays  the  spatial 

distribution of degree  strength  on  a  global  scale.  The  maximum  degree  strength is greater 

than  harmonic  degree 100 near  the  low-altitude  periapse  locations,  although  the  actual 

degree  strength  is  greater  because of the  overly  pessimistic  data  weight  for  the  high 

frequency  terms.  Johnson  et  al,  1997,  looking  at  the  coherence  of  track-to-track  Doppler 

residuals  obtains  resolution of  the  gravity data as high  as  degree  and  order  140. However, 

our  value  for the  minimum  degree  strength  of 35 south of  eastern  Aphrodite  Terra is near 

the  true  value. 

The  basic  idea  of  the  gravity  constraint  method  is  to  constrain  the  "noise"  of the 

gravity  field  to  zero  with  some  uncertainty  when  the  "noise"  exceeds  the  "signal."  The 

acceleration  at  the  surface  from all harmonic  coeffkients  greater  than or equal  to  the  degree 

strength  is  constrained  to  zero  with an  uncertainty  approximately  equal  to  the  expected 

signal  at the degree  strength. This amounts  to  generating  observations  over  the  entire 

surface  of  the  sphere  based  upon  the  degree  strength  at  each  latitude  and  longitude. An 

observation (a~,120) for degree  strength D is 

and  the  linearized  observation  equation  is  given by (Bierman,  1977) 

where Zi is the difference  between  the  observed  value  (zero  in  this  case)  and  the  nominal 

value  of  the  observation  (the  accumulated  acceleration at the  surface for degrees D to 120 

from  the  a  priori  gravity), Ai is the  row  vector  of  observation  partials  (the  partial  of  the 
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observation  with  respect  to  all  the  parameters  being  estimated), x is the  vector  of  estimated 

parameters  (differences in the  gravity  coefficients  from  the  nominal  gravity  model),  and Vi 

is the  observation  error. The partials Ai to  construct the observation  equation  are 

where G is the  vector of all gravity  coefficients. The elements of Ai for coefficients  with 

degrees  less  than  the  degree  strength D are  zero  and, otherwise, are as given  above. 

The  observations  are  then merged with  the  unconstrained  gravity  square  root 

information  array  using  Householder  transformations. In normal form, the  constrained 

gravity  estimate x is  written as 

where Pnoap is the unconstrained  covariance  of  the  gravity  coefficients, A is the  matrix of 

observation  partials  with  each  row  an  observation, W is the diagonal  weight  matrix, Xnoap 

is  the  unconstrained  gravity  estimate,  and z is the vector of  linearized  observations.  The 

new  constrained  covariance P is  then 

P = [Pibap + ATWA]" 

The observations  should be spaced such that  at  least three observations  are  generated  over 

the shortest  harmonic  wavelength. The weight  used for an observation is then  proportional 

to  the  area  between  observations  and is approximately  equal  to  the  signal  at  the  degree 

strength  (i.e.,  10  to 20 milligals).  The  observations are globally  distributed  on  a  rectangular 

grid of latitude  and  longitude  with  a  spacing  of one degree. 
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The  main  advantage  of  using this spatial  constraint  instead of a  straight  Kaula  rule 

on the  spectrum  appears  to be better  determination of  peak amplitudes.  Since  the  well 

determined  degrees  are  not  constrained  directly  (only  somewhat  through  correlations),  the 

amplitudes  (and  coefficients) for those  degrees  are  not  biased  toward  zero.  It  is  also  flexible 

in allowing  relaxation  of  selected regions for any  reason, such as  incorrect  data  weighting 

or a  region  exhibiting  greater  signal  than  the  power rule. In general,  there  are  only  slight 

differences  between  the two constraint  methods  since Venus does not  have strong local 

deviations  from h u l a  power  spectrum. For Mars,  the  differences  are  more  pronounced for 

the Tharsis  region  (Konopliv  and Sjogren, 1995a). 

Gravity Results 

The  180th  degree  gravity  field  has  about 33,000 coefficients  resulting  in  near  one- 

degree or 100 km resolution  in  selected  periapse  regions.  Figure 3 shows the  vertical 

acceleration  on  a  reference  sphere of 605 1 .O km for two of these areas, the  volcanic  swells 

of Beta  Regio  and  Atla  Regio. The rift  zone  of  Beta  Regio  at  280-285"E  and 15-20"N and 

Maat  Mons  of  Atla regio  are  the  strongest  high  frequency  signatures on  Venus.  The 

correlation  with  topography for the  rift  zone is greater  than 0.6 for degrees  greater  than 

150. In Figure  3b  the  largest  gravity  amplitude  of  over 500 milligals  is  evident for Maat 

Mons. The greatest  changes  in  the  gravity  field versus the  previous  120th  degree  solution 

MGNP120PSAAP  are in the  equatorial  region  from Atla  Regio  eastward  to  Beta  Regio. 

This area shows a  very strong high  frequency  gravity  signature.  In  addition,  there  is  a 

significant  increase  in  correlation  between  the  gravity  and  topography  for  the  entire  Ishtar 

Terra. 

Whereas  the  high  frequency  information  in  the  gravity is well  represented  by  the 

free-air  acceleration, as seen in Figure 3, the  geoid  better  displays  the  long  wavelength 

features of the MGNP180U solution (Figure 4). The  rift-zone of Beta  and Maat Mons  are 

not  as  evident  but  Maat  Mons  still has the  largest  geoid  value  of  158  meters  with  Beta  the 

next  largest  amplitude  of  over 110 meters  and  Maxwell  Mons  of  over 90 meters. The 
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uncertainty  in  the  geoid  from  the  120th  degree  covariance  is  less  than  one  meter  for  the 

equatorial  regions  and  up  to  four  meters  for  the  gap  in  cycle 5 and 6  data  near Imdr (in  the 

southern  hemisphere  south  of  Atla).  The  corresponding  free-air  uncertainties  are 10 

milligals in the  better  determined  areas  and  up  to 50 milligals  in  the  cycle 5 and 6  gap. 

The  GM,  second  degree  coefficients,  and  their  formal  sigmas  are  listed  in  Table  1 

for  various  solutions  that we  have  produced.  The  formal  sigmas  are  typically  too  small  and 

the  current  formal  sigmas  need  to  be  increased  by  a  factor of 3 to 5. Again, this is  due  to 

long  wavelength  solar  plasma  noise  in  the  data.  There  is  a  significant  change  in  the 

coefficients  between  the  90th  and  120th  degree  solutions  because  of  the  increase  in  data  arc 

length  from  one  day  to  three  days  and  improved  the  long  wavelength  information  for  the 

gravity  field.  The  principal  axes of inertia, which  are  determined  from  the  second  degree 

harmonics,  are  listed  in  Table  2.  There is a  consistent  offset of  the  polar  inertial  axis  from 

the  rotational  pole of 0.5 degrees  for all the solutions  and  indicates  a  wobble  of  the  Venus 

pole  (Yoder  and  Ward,  1979). 

The  Venus  pole  and  rotation  rate  solutions  are  given  in  Table  3.  Increasing  the 

formal  statistic  by  a  factor of three to more  realistic  levels,  our  pole  solution is 

272.743f0.006 for the  right  ascension, 67.156f0.006 for  the  declination,  and 

243.02OOkO.0006  days  for  the rotation  rate.  Our  rotation  period  solution  is  slightly  longer 

than  that  determined  by  Davies  et al (1992b) of 243.0185f0.0001. Both,  however  are 

consistently  below  the  1988  IAU  value  (243.025)  based  upon  Earth  radar  measurements of 

Venus  and  more  recent  radar  determinations by Slade et al(1990) of  243.022 f 0.003. 

The  coefficients  of  the  gravity  field  show  considerably  increased power  in  the  high 

degree  terms  versus  the  previous  120th  degree  solution  MGNP120PSAAP.  Figure 5 

shows the  rms  magnitude  spectrum  for  the two  solutions  MGNP180U  and 

MGNP120PSAAP  along  with  the  uncertainty  in  the  spectrum  for MGNP180U. In the 

MGNP120PSAAP  solution  there  is  a  distinct  change (a slight  discontinuity)  in  the  curve at 

degree 90. This  is  because  the  nominal  field  for  the  MGNP120PSAAP  solution is a  90th 
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degree  solution.  The  new  solution  (MGNP180U)  which is a  complete  iteration  on  the  first 

120th  degree  coefficients,  eliminates this discontinuity.  However,  the  higher  degree  terms 

beyond  degree  120  now  show  a  slight  discontinuity  and  some  decreasing  power.  The  break 

at  120th  degree  and  order  is  due  to  solving for only  a  complete  120th  degree  and  order 

solution  in  the  first  step  of  our  method (i-e., the  coefficients  greater  than  120  are 

decorrelated  in  the  solution  for  coefficients  less  than  120).  This  slight shift at 120  could be 

removed  by  solving  for  a  complete  180th  degree  solution  in  one  step.  The  would  provide 

the  best  possible  solution  but  would  require  significantly  more  supercomputer  time  and  the 

resulting  covariance  would  be  a  cumbersome  4  GB in size. 

The  different  steps  in  solving  for  a  180th  degree  field  are  also  evident  in  the 

uncertainty  or  sigma  curve  in  Figure 5. The  second  step  (solving  for  degrees  1  16  to  155) 

causes  the  slight  change  at  degree  1  16  and  the  third  step  (solving  for  degrees  154  to  180) 

causes  the  slight  change  at  degree  154.  But  the  uncertainties  from  all  three  steps  match 

fairly  well  and so does  the  power  in  the  coefficients. 

Figure 6 shows the  admittance of the  three  gravity  fields  MGNP180U  (this  paper), 

MGNP120PSAAP  (Konopliv et al,  1996a),  and  MGNP60FSAAP  (Konopliv  et  al,  1994) 

together  with  the  theoretical  admittance  for  @-type  compensation  at  depths  of  25, 50, 

100, 200, and 300 km. The  admittance  has  substantially  increased  from  earlier  work 

especially  in  the  higher  degrees.  Results  indicate  globally  averaged Auy compensation at 

depths of  25 to 50 km for harmonic  degrees 40 to 100. Beyond  degree  100,  the  reduction 

in  global  admittance  is due  to  lack of  global  resolution  in  the  Doppler  tracking  data. 

In addition  to  the  increase  in  power  and  admittance,  the  180th  degree  solution  also 

shows  substantial  increase  in  correlation  with  topography  (the  360th  degree  model  of 

Rappaport  et al, 1998).  Figure 7 shows the  correlation  of  the  gravity  and  topography 

harmonic  coefficients  with  the  new  model  showing  an  increase  in  correlation  beginning 

near  degree 70 and  extending for the  higher  degree  terms  with  large  differences  from 

degree  90  to  120.  The  correlations  decrease to near  zero  at  degree  180  indicating  the  loss of 
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gravity  signal in the data. There is not  much  benefit in extending  the  solution  beyond 

degree  180. Figure 8 shows the  spatial  correlation of the  gravity  with  topography for the 

high  frequency  terms  between  degree  120  and  150. The geoid  and  topography  height  are 

computed  and  the  correlated  with  a  sliding  10  degree  rectangular  window.  Correlations 

above  0.8  are  evident  near  Beta  Regio  and  near 0.8 for Atla  Regio  and  eastward to Beta. 

Other  areas  that  show  high  correlation  are  Ishtar  Terra (0.5) and  eastern  Eistla  Regio ( O S ) ,  

the  location  of  several  large  coronae of interest.  Figure  9  shows  the  spatial  correlation of 

the  gravity  with  topography  for  the  high  frequency  terms  between  degree  150  and  180.  The 

rift-zone of Beta shows the greatest  correlation (>0.6) with  correlations  greater  than 0.4 for 

portions of Atla  and  eastern  Eistla. 

The correlations  (both  spectral  and  spatial)  and  the  power in the rms spectrum  are 

sensitive to the amount  of  constraint  applied to the  gravity  solution.  For  the first step (i.e., 

to  degree 120), the  constraint  was  relaxed  to  allow  near  maximum  correlations  of  gravity 

with  topography  both  spatially  and  spectrally. Any further  relaxation  tended  to  decrease  the 

correlations. So power in the  spectrum  (and  thus  admittance)  could  be  increased  further by 

relaxing  the  a  priori  constraint  some  more  but  only  at  the  expense  (i.e,  reduction)  of  the 

correlations. In addition, further  relaxation  produced  addition  visible  noise in the  gravity 

field as shown  by the free-air anomalies.  For  the  degrees  greater  than 120, the  a  priori  was 

applied  to  maximize  only  the  spatial  correlations (as given by Figures  8  and  9)  near  the hgh 

resolution  regions such as Atla  and  Beta. Any  relaxation  beyond  this  did  not  improve  the 

correlations  for  those areas and  actually  tended  to  decrease  them.  However,  the  spectral or 

global  correlations (as given by Figure 7) were  smaller  as  a  result  of  using  this  a  priori 

(probably  from  increased  noise).  A  tighter  constraint  would  give  better  spectral  correlations 

but  at  the  expense  of  reduced  power  (and  admittance)  and  spatial  correlations for Atla  and 

Beta. Even with  the  relaxed  a priori, the  uncertainty in the  admittance for degrees  greater 

than 120 remains  large.  Depending on how  willing  one  is  to  reduce  the  correlations,  the 

admittance  can be significantly  increased. So caution is needed in interpreting  the  high 
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frequency  admittance (> degree  120).  Nevertheless,  the  new  gravity  field is much 

improved  for  investigating  small  scale  features  such as volcanoes  and  coronae as has  been 

done,  for  example,  by  Simons et al (1997), McGovern  et  al  (1997)  and  Smrekar  and 

Stofan  (1998). 

Bearing  these  caveats  in  mind,  it  can  be  seen  from  Table 4 that  this  gravity  model 

has  had  a  substantial  effect  on  the  amplitudes  of  nearly all the  major  gravitational  features 

on  the  planet,  even  though  the  broader  field  remains  nearly  unaffected. The largest  changes 

with  respect  to  the  previous  solution  are  at  Bell Regio, Maat Mons,  and Mead Crater, with 

increases of 32%, 32%, and 55%, respectively.  Although much  of this  increase is due 

simply  to  the  inclusion  of  the  additional  shorter  wavelength  power  beyond  1=120,  an 

appreciable  portion is derived  from  the  extra  power  that  has  gone into degrees 80- 120. 

Only  Atalanta Planitia,  Gula Mons, and  Maxwell  Montes  are  nearly  unaltered,  suggesting 

that  there is little  short-wavelength  structure  (which is the  case for Atalanta) or that  the 

support of the  major  topographic  extent  of  these  features is relatively  deep. 

The  gravity  resolution of this  field  (full  wavelengths of  -200 km) begins to  cover 

the  wavelength  region  where  geophysical  models for the support of substantial  individual 

anomalies  (such as major  volcanoes, large impact  basins,  etc.)  tend  to  be  most  sensitive  to 

variation  of  parameters  such  as  lithospheric  thickness. For example,  the  admittance 

function  of  a  simple  top-loaded  flexure  model  changes  from  a  higher  flexure-dominated 

value  to  a  lower  buoyancy-dominated  value  at  a  wavelength  about 8 times  the  lithosphere 

thickness,  with the bulk of  the  change  occurring  over  about  a  decade  in  wavelength. For 

thin lithosphere  models, this is just within  the  high-degree  end of this model. Thus we 

expect  that  the  availability  of  MGNP180U  should  allow for better  high-frequency 

modeling,  especially in the  Atla,  Bell  and  Beta  regions. 
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Coefficient 

GM 

- c20 x107 
- c21 x107 

60x60' 

324858.63 

M.01 

-19938S9 

247f27 

- 7 s 7  

8344-4 

-888f39 

90x90' 

324858.601 

I I + 120x1203 18Ox18O4 

324858.590  324858.592 

M.006 I M.006 

-19716f7 

29W5 

- 19698f7 - 1969727 

267k4 268f4 

1 4 3 s  

85479 

13824 I 132k4 

860W10 I 8578f10 

-999-19 I -951f10 -955210 

Table  1 : GM  and  normalized  harmonic  coefficients  of  degree  two  and  formal  sigmas  for  the 

following  gravity  models: (1) Konopliv  and Sjogren, 1994a, MGNP60FSAAP  (2) 

Konopliv  and Sjogren, 1996c, MGNP90LSAAP (3) Konopliv  et al, 1996a, 

MGNP120PSAAP and (4) this paper, MGNP180U. 
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Axes 1,2,3 Axes O f  inertia 
I I i 

(deg) 180~180~ 120x1203  9Ox9O2 60x60' 

Latitude  0.35  0.35  0.38 0.3 

Longitude  -3.33  -3.15  -3.17 

Latitude 

Longitude 87.0  86.67  86.85  86.83 

Latitude 

-139.69  -138.74 -139.87  -179.3 Longitude 

89.52  89.5  1  89.48  89.67 

Table 2: Orientation of Venus'  principal  axes of inertia  for  the  following  gravity  models:  (1) 

Konopliv  and Sjogren, 1994a, MGNP60FSAAP (2) Konopliv  and Sjogren, 1996c, 

MGNP90LSAAP (3) Konopliv et al, 1996a, MGNP120PSAAP  and (4) this paper, 

MGNP  1 SOU. 
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Parameter Davies(l992b) 1 8 0 ~ 1 8 0 ~  1 2 0 ~ 1 2 0 ~  90x90' 

Pole  Right 

f0.02 k0.002 f0.002  M.002 Ascension  (deg) 

272.76  272.743  272.743  272.749 

I I 

Pole 

~ . 0 0 0 1  M.0002 &0.0002 k0.0002 Rate  (days) 

243.0185  243.0200  243.0201  243.0194 Rotation 

kO.01 +0.001 m o o 1  kO.001 Declination  (deg) 

67.16  67.156  67.156  67.160 

Table 3: Venus  pole  right  ascension  and  declination  in  Earth-Mean-Equator  of 52000, 

rotation rate, and formal  sigmas for the following  gravity  models (1) Konopliv  and 

Sjogren, 1996c, MGNP90LSAAP  (2)  Konopliv  et al, 1996a,  MGNP120PSAAP  and (3) 

this paper, MGNP180U. 
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Feature 

Maxwell 

Akna 

Freya 

Bell 

Beta 

Gula 

Maat 

opa 

Nokomis 

Sapas 

Atalanta 

Mead 

I Longitude I Latitude I 9 0 ~ 9 0 ~  I 1 2 0 ~ 1 2 0 ~  I 1 8 0 ~ 1 8 0 ~  I 
4.5 268.2 249.4  244.7  63.5 

-42.5 154.8  121.1 115.2 68.5 

-23.5 150.1  128.1 126.3  73.5 

46.0 

-79.0 

-2.0 

195.0 

200.0 

190.0 

188.0 

164.5 

57.2 

29.0 

138.3 135.3  138.3  22.0 

288.7 237.9 234.3  25.5 

218.8 165.3  126.3 

1 .o 
268.9 228.5  245.5  3.5 

'535.0  401.5 356.4 

19.5 

-103.9 -67.0  -49.7  12.6 

-85.8  -84.5  -84.4  62.5 

210.6  174.1  157.5 8.5 

168.6  147.7  132.9 

Table 4: Gravity  peaks in milligals at the  surface for Venusian  features  of  interest for the 

following  gravity  models (1) Konopliv  and Sjogren, 1996c, MGNP9OLSAAP (2) 

Konopliv et al, 1996a,  MGNP120PSAAP  and (3) this paper,  MGNP180U. 
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Figure 1. Contribution of each  harmonic  degree  to  the  amplitude  of  the  radial  acceleration at 

the  refernce  surface  and  the  radial  uncertainty.  The  expected  acceleration  amplitude  or 

signal  is  given  by  equation (l), the  Kaula  rule  for  Venus,  and  is  the  same  for  all  latitudes 

and  longitudes.  The  uncertainties  in  the  accelertion  profiles, as given  by  equation (2) using 

the  unconstrained  covariance,  are  given  for  three  different  regions,  Atalanta,  eastern  Eistla, 

and  the  area  with  the  poorest  data  resolution  (the  southern  data  gap  at  180"E  and 60"s). 

Figure  2.  The  degree  strength for gravity  field  MGNP180U  as  determined  from  the 

unconstrained  120th  degree  and  order  covariance  in  the  first of  three steps in obtaining  the 

full  180th  degree  solution.  The  contours are in  harmonic  degree  and  represent  the  degree 

where  the  contribution to the  signal of  that  degree  (based OR the  Kaula  rule) is equal  to  the 

contribution to the  uncertainty. 

Figure 3. Free-air  gravity  at  the  reference  surface  for  (a)  Beta  Regio  and  (b)  Atla  Regio. 

Gravity is displayed  in  contour  lines  every  20  milligals  with  positive  contours  as  solid  lines 

and  negative  as  dashed.  The  topography  (Rappaport  et  al,  1998) is displayed  in  color  with 

the  same  resolution  as  the  gravity  field  (harmonic  coefficients  to  degree  and  order  180). 

Figure 4. Geoid of the  full  MGNP180U  gravity  field  with  respect to the  reference sphere. 

Contours  are  in 10 meter  intervals. 

Figure 5. RMS magnitude  spectrun  of  the  gravity  fields  ,MGNP180U  (this  paper)  and 

MGNP120PSAAP  (Konopliv  et  al,  1996a) and  the  error  spectrum  for MGNP180U. Also 

shown  is  the  Kaula  rule  scaled  for  Venus ( 1 . 2 ~  1 09n2). 
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Figure 6. Global  admittance  from  gravity  fields (1) MGNP180U, (2) MGNP120PSAAP, 

and  (3)  MGNP60FSAAP.  Displayed as lines  without symbols are  theoretical  admittances 

from Airy compensation  at  depths of 25,50, 100,200, and  300 km. 

Figure 7. Correlation  of  gravity  coefficients  with  topography  coefficients from Rappaport 

et al, 1998. Correlations  are  shown for gravity  fields  MGNP120PSAAP (Konopliv et al, 

1996a) and MGNP180U  (this  paper). 

Figure 8. Spatial  correlation  of  the  geoid  with  topography  height for coefficients from 

degrees 120 to  150 only. The  contours are in  intervals  of 0.2 with  the  positive  contour 

correlations  shown  with  the  darker  solid  lines  and  the  zero  and  negative contours shown 

with  the  lighter  dashed  lines. 

Figure 9. Spatial  correlation  .of  'the  geoid  with  topography  height for coefficients  from 

degrees  150  to 180 only. The  contours  are in  intervals  of 0.2 with  the  positive  contour 

correlations  shown  with the darker  solid  lines  and  the  zero  and  negative contours shown 

with  the  lighter  dashed  lines. 
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